

 www.cypress.com Document No. 001-58764 Rev. *E 1

AN58764

Implementing a Virtual COM Port using FX2LP

Author: Prajith Cheerakkoda
Associated Project: Yes

Associated Part Family: CY7C68013/14/15/16
Software Version: None

Related Application Notes: AN65209

AN58764 explains how to implement a virtual COM port device using FX2LP. This eases migration from UART to USB.

This document contains example code with the required descriptors, class-specific request handling, and the INF file

required for enumeration.

Contents

Introduction ... 1
Virtual COM Port ... 1
Communication Device Class Specification 2

Abstract Control Model ... 2
Data Transfer ... 2
Device Management .. 3
Class Specific requests .. 3

Firmware ... 4
Functional Descriptors .. 4
EndPoints ... 5
Data Transfer ... 6
Communication Management 6
Baud Rate Selection ... 7
INF File ... 9

Test Procedure .. 9
Hardware Requirements... 9
Software Requirements .. 9
Hardware Setup ... 9
HW Connections .. 9
Procedure ... 9
Hyper Terminal Settings ... 9
Firmware Download ... 10

Reference .. 11
Summary ... 12
Related Application Notes ... 12
Worldwide Sales and Design Support 14

Introduction

The EZ-USB FX2LP™ is a high-speed USB peripheral
controller. The programmability and flexibility of FX2LP
allows easy implementation of USB device classes such as
CDC (Communication Device Class), MSC (Mass Storage
Class) and HID (human Interface Device). This application
note discusses the implementation of virtual COM port
device using FX2LP. This is done without any additional
driver effort by using the default Windows serial driver
(usbser.sys). Virtual COM port can coexist with other high
speed interfaces and can be used for debug and
manufacturing purpose.

 Familiarity of Technical Reference Manual (TRM) chapter
“14.Timers/Counter and Serial Interface” is assumed.

Figure 1. FX2LP as VirtualCOM Port.

Virtual COM Port

There are many PCs and laptops in the market that do not
have a legacy COM port. The CDC device class of USB
gives a way to fill the void of a COM port. Microsoft
Windows natively comes with a serial driver usbser.sys,

which does the UART to USB translations and vice versa.
This driver allows legacy applications such as
HyperTerminal to communicate with legacy devices.

http://www.cypress.com/?rID=48371

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 2

Figure 2. PC with COM Port

Figure 3. PC with Virtual COM Port

Communication Device Class
Specification

USB communication device class (USB CDC), which
defines architecture for emulating Telecommunication and
Network Devices on USB ports, is a composite USB device
class. Although it is a single device class, there may be
more than one interface implemented such as a custom
control interface, data interface, audio, or mass storage–
related interfaces.

The CDC specifications are available through USB-IF
website,
http://www.usb.org/developers/devclass_docs/usbcdc11.pdf.
This class specification supports five basic models of
communication and each has one or more subclasses.

POTS: Devices that communicate through ordinary phone

lines and generic COM-port devices.

ISDN: Communication through phone lines with ISDN

interfaces

Networking model: Communication through Ethernet or

ATM

Wireless mobile communication: Cell phones that support

voice and data communication

Ethernet emulation model: An efficient way for devices to

send and receive Ethernet frames

In this project for serial emulation we implement ACM
(Abstract Control Model) subclass, which comes under plain
old telephone system (POTS) model.

Abstract Control Model

The Abstract Control Model (ACM) can bridge the gap
between legacy modem devices and USB devices. The
ACM in the USB CDC Specification (Section 3.6.2.1) details
the serial enumeration requirements, class specific
requests, and serial notification required to establish a
communication protocol.

Abstract Control Model requires two interfaces for
communication devices.

Communication Class Interface: This is a device

management interface for controlling operations of the
device. In addition to standard USB requests this interface
conveys class specific requests to the device. These
requests are covered in Class Specific Request section.

This interface has an optional notification component as
well. It requires one interrupt IN endpoint to notify the host
about the status of the control signals. Even though
notification element is an optional component of
communication interface it is required in standard PC.

Data Class interface: All data transfer between the host

and the device is handled in this interface. It requires two
BULK Endpoints, IN Endpoint for receiving data and an OUT
Endpoint for sending data.

Data Transfer

In ACM subclass interfaces are implemented as in figure
shown below.

Figure 4. CDC Interface

In the attached project, Host sends data from the legacy
application to legacy device through EP1OUT bulk endpoint
of FX2LP. Similarly data received from the legacy device is
committed to EP8IN bulk Endpoint, Host polls the IN
endpoint to receive data.

http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/Universal_Serial_Bus#Device_classes
http://en.wikipedia.org/wiki/USB_mass_storage_device_class
http://www.usb.org/developers/devclass_docs/usbcdc11.pdf
http://www.usb.org/developers/devclass_docs/usbcdc11.pdf

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 3

Device Management

Management component of communication interface
accomplishes Device management through the default
control endpoint EP0. There are class specific requests for
CDC device management.

Class Specific requests

To support certain types of legacy applications, two
problems need to be addressed, supporting specific legacy
control signals and state variables. Class-specific requests
are defined to support these requirements

Set_line_coding: Sets asynchronous serial parameters: bit

rate, number of stop bits, parity, and number of data bits.

Bit rate: This parameter sets the baud rate of
communication i.e. number of bits transmitted per second.

Parity bit: This is used for error handling. Here we don‟t use
parity so set it as “None” in Host application.

Number of stop bits: Bits following actual data bits.

Number of data bits: Number of bits transferred for each
byte of data.

Get_line_coding: Requests asynchronous serial

parameters: bit rate, number of stop bits, parity, and number
of data bits. Host requests the present device configuration.

Set_control_line_state: Sets RS-232 signals, RTS, and

DTR. This is optional but is required if these signals are
used. Since these signals are not present in FX2LP,
attached project doesn‟t use these signals.

The device returns notifications through interrupt IN
endpoint. The host issues periodic IN tokens to the
endpoint. The endpoint returns the notification if available
and NAKs if it does not have any notification. In the
firmware, SERIAL STATE notification sends the state of CD,
DSR, Break, and RI. Sending this notification is optional.

Table 1. SET_LINE_CODING request format

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_LINE_CODING Zero Interface Size of structure Line Coding Structure

Table 2. GET_LINE_CODING request format

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_LINE_CODING Zero Interface Size of structure Line Coding Structure

Table 3. Line coding structure

Offset Field Size Value Description

0 dwDTERate 4 Number Data terminal rate (in bits per second)

4 bCharFormat 1 Number Stop bits

0 - 1 stop bit

1 - 1.5 Stop bits

2 - 2 Stop bits

5 bParityType 1 Number Parity

 0 - None

1 - Odd

2 - Even

3 - Mark

4 - Space

6 bDataBits 1 Number Data bits 5, 6, 7, 8, or 16

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 4

Table 4. SET_CONTROL_LINE_STATE request format

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_CONTROL_LINE_STATE Control Signal
Bitmap

Interface Zero None

Table 5. Control Signal Bitmap Values for SetControlLineState

Bit Position Description

D15….D2 RESERVED(Reset to zero)

D1 Carrier control for half duplex modems. This signal corresponds to V.24 signal 105 and RS-232 signal RTS.

0 - Deactivate carrier

1 - Activate carrier

The device ignores the value of this bit when operating in full duplex mode.

D0 Indicates to DCE if DTE is present or not. This signal corresponds to V.24 signal 108/2 and RS-232 signal DTR.

0 - Not Present

1 - Present

Firmware

This Virtual COM Example Code contains three files:

Fw.c: Firmware framework from Cypress. It contains a
common functionality with hooks for the user-specific
functionality.

Virtual.c: Contains definitions of the functions and ISRs
used for implementing the USB peripheral functionality as a
virtual COM device.

DSCR.A51: Assembly source that contains the

communication class and device class interfaces.

Since CDC is a composite USB device class it has two
interfaces, Data class interface and Communication class
interface. Communication interface includes class specific
descriptors (which is specific to communication class
devices), called Functional descriptors. Functional
descriptors describe class-specific information within
Communication class Interface descriptor. Data class
interface doesn‟t hold any class specific descriptors.

Functional Descriptors

 These descriptors hold class specific information within
communication class interface descriptor. Following are
functional descriptors.

 Header Functional Descriptor

 ACM Functional Descriptor

 Union Functional Descriptor

 Call Management Functional Descriptor

The descriptors are declared in the assembly source
DSCR.a51. This assembly code is a part of attached project

to this application note.

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 5

 ;; Header Functional Descriptor

 db 05H ;; Descriptor Size in Bytes (5)

 db 24H ;; CS_Interface

 db 00H ;; Header Functional Descriptor

 dw 1001H ;; bcdCDC

 ;; ACM Functional Descriptor

 db 04H ;; Descriptor Size in Bytes (5)

 db 24H ;; CS_Interface

 db 02H ;; Abstarct Control Management Functional Desc

 db 02H ;; bmCapabilities

 ;; Union Functional Descriptor

 db 05H ;; Descriptor Size in Bytes (5)

 db 24H ;; CS_Interface

 db 06H ;; Union Functional Descriptor

 db 00H ;; bMasterInterface

 db 01H ;; bSlaveInterface0

 ;; CM Functional Descriptor

 db 05H ;; Descriptor Size in Bytes (5)

 db 24H ;; CS_Interface

 db 01H ;; CM Functional Descriptor

 db 00H ;; bmCapabilities

 db 01H ;; bDataInterface

Header Functional Descriptor

Functional descriptor starts with Header functional
descriptors. This is used to specify CDC version on which
device is implemented.

ACM Functional Descriptor

It describes the commands supported by Communication
Class Interface. Device supports the request combination of
Set_Line_Coding, Set_ Control_Line_State,
Get_Line_Coding and the notification Serial_State.

Union Functional Descriptor

Union Functional Descriptor describes the relationship
among the interfaces which forms a single functional unit. It
sets one of the interfaces in the group as a Master which
functions as a controlling interface for the group and others
as Slaves. Here Communication Class Interface acts as
master and Data Class Interface as Slave. Host and device
exchange requests and notifications via Communication
class interface. Standard and class specific requests for the
group are sent to this interface through EP0 control
endpoint. Group sends notifications through EP1IN interrupt
endpoint to host.

Call Management Funct ional Descriptor

Describes how device handles call management. Here
device doesn‟t handle call management. Field
bmCapabilities is a bitmap which shows information about
device call management and interface used for exchange of
call management information.

For more information on Functional descriptors see section
5.2.3 Functional Descriptors of CDC specification

The VID/PID can be changed according to the customer
requirement in the Device Descriptor.

EndPoints

Communication Interface uses default endpoint EP0 for
device management. Device uses EP0 for all standard and
communication specific requests. Notification element is
implemented by an interrupt endpoint, EP1IN.

Data interface endpoints are restricted to being either Bulk
or Isochronous and should be pairs of same type. In the
attached project, Data interface uses EP1OUT and EP8IN
for data out and data in respectively, both as bulk.

http://www.usb.org/developers/devclass_docs/usbcdc11.pdf

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 6

Data Transfer

DATA OUT PATH

Following code implements data transfer from the Host to
the device. Out path consists of two ISRs(Interrupt Service

Routine), ISR_USART0(void) interrupt 4: Serial

port 0 interrupt and ISR_Ep1out(void) interrupt

0: Out endpoint interrupt.

For EP1OUT endpoint, the interrupt request signifies that
OUT data has been sent from the host, validated by the EZ-
USB FX2LP, and is in the endpoint buffer memory. Endpoint
ISR initiates the out data transfer by placing first byte of
endpoint buffer into the serial buffer SBUF0. Remaining
bytes will be transferred by transmit() function triggered by
ISR_USART0.

void ISR_Ep1out(void) interrupt 0

// Places first byte into SBUF0

{

 EZUSB_IRQ_CLEAR();

 //Clears the USB interrupt

 EPIRQ = bmBIT3;

 //Clears EP1 OUT interrupt request

 while (TI == 1) ;

 i=0;

 bcl=EP1OUTBC;

 SBUF0=EP1OUTBUF[i++];

}

void transmit(void)

//Transmit bytes received from EP1OUT

{

 if (!(EP1OUTCS & 0x02))

 {

 if(i<bcl)

 { SBUF0=EP1OUTBUF[i++];

 dum=D5ON;

 z^=1;

 if (z)

 {dum=D5OFF;}

 }

 else

 {

 EP1OUTBC = 0x04;

// Arms endpoint

 }

 }

}

The BUSY bit (EP1OUTCS.2) indicates the status of the
endpoint‟s OUT Buffer EP1OUTBUF. The USB core sets
BUSY=0 when the host data is available in the OUT buffer.
The statement SBUF0=EP1OUTBUF[i++]; passes each
bytes in EP1OUT buffer to SBUF0. TI is Transmit Flag, it

sets when a byte has been completely transmitted.
Successful datatransfer triggers ISR_USART0 ISR.

void ISR_USART0(void) interrupt 4

 {

 if (RI)

 {

 if((EP2468STAT & bmEP8EMPTY))

// check if EP8 is empty

 {

 RI=0;

 EP8FIFOBUF [0] = SBUF0;

// copies received data to SBUF0

 EP8BCH = 0;

 SYNCDELAY;

 EP8BCL = 1;

 SYNCDELAY;

 dut=D2ON;

 w^=1;

 if (w)

 {

dut=D2OFF;

 }

 }

 }

 if (TI)

 {

 TI=0;

 transmit();

 }

 }

The ISR_USART0 checks which condition caused the
interrupt, data reception or transmission, and calls proseeds
accordingly. TI interrupt calls the transmit() function to check
data availability in the OUT buffer and transmits data if it is
available.

DATA IN PATH

Following part of code in ISR_USART0 ISR

accomplishes device to host data transfer.

if (RI)

 {

 if((EP2468STAT & bmEP8EMPTY))

// check if EP8 is empty

 {

 RI=0;

 EP8FIFOBUF [0] = SBUF0;

// copies received data to SBUF0

 EP8BCH = 0; //Commit EP

 SYNCDELAY;

 EP8BCL = 1;

 SYNCDELAY;

if serial interrupt is triggered and receive interrupt flag is
asserted the above code puts data received in SBUF0 into
EP8 endpoint and commits it.

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 7

Communication Management

CDC defines class specific requests and notification
component for device management. SET_LINE_CODING,
GET_LINE_CODING and SET_CONTROL_STATE are the
class specific requests. Their values are defined by following
codes.

#define SET_LINE_CODING (0x20)

#define GET_LINE_CODING (0x21)

#define SET_CONTROL_STATE (0x22)

Following code identifies request type and sets
asynchronous serial parameters or sends the asynchronous
serial parameters to Host.

SET_LINE_CODING case copies data packet of the control
transfer to LineCode array and passes it to Serial0Init()
function. This data packet contains the asynchronous serial
parameters sent by host. Its byte structure is given in

Table 3. The Serial0Init() function parses the

contents of LineCode array and sets corresponding baud
rate.

switch(SETUPDAT[1])

 {

 case SET_LINE_CODING:

 Len = 7;

 EUSB = 0 ;

 SUDPTRCTL = 0x01;

 EP0BCL = 0x00;

 SUDPTRCTL = 0x00;

 EUSB = 1;

 while (EP0BCL != Len);

 SYNCDELAY;

 for (i=0;i<Len;i++)

 LineCode[i] = EP0BUF[i];

 Serial0Init();

 break;

GET_LINE_CODING case copies LineCode contents to
EP0BUF and commits it. As per CDC specification the
device is required to report default line coding settings in
response to GET_LINE_CODING request from the Host.
Therefore this case statement copies line coding data to

EP0BUF from LineCode array and commits it.

 case GET_LINE_CODING:

 SUDPTRCTL = 0x01;

 Len = 7;

 for (i=0;i<Len;i++)

 EP0BUF[i] = LineCode[i];

 EP0BCH = 0x00;

 SYNCDELAY;

 EP0BCL = Len;

 SYNCDELAY;

 while (EP0CS & 0x02);

 SUDPTRCTL = 0x00;

break;

Since serial port of FX2LP doesn‟t have DTR and DTE pins
this application doesn‟t include SET_CONTROL_STATE.

 case SET_CONTROL_STATE:

 break;

Baud Rate Selection

Below code checks the host sent baud rate in LineCode[0] and LineCode[1] and then sets that particular baud rate. Following
are the baud rates supported in the associated project 2400, 4800, 9600, 19200, 28800, 38400, 57600, 115200 and 230400
bits per second.

 The Serial0Init() function configures the serial pot of FX2LP for the baud rate requested by host.

void Serial0Init() // serial UART 0 with Timer 2 in mode 1 or high speed baud rate generator

{

 if ((LineCode[0] == 0x60) && (LineCode[1] == 0x09)) // 2400

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow Flag

 RCAP2H = 0xFD; //Set TH2 value for timer2

 RCAP2L = 0x90; //baud rate is set to 2400 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate

 }

 else if ((LineCode[0] == 0xC0) && (LineCode[1] == 0x12)) // 4800

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge, Enable

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 8

 //Timer0, Set Timer overflow Flag

 RCAP2H = 0xFE; //Set TH2 value for timer2

 RCAP2L = 0xC8; //baud rate is set to 4800 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; // value of the lower 8 bits of timer set to baud rate

 }

 else if ((LineCode[0] == 0x80) && (LineCode[1] == 0x25)) // 9600

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow Flag

 RCAP2H = 0xFF; //Set TH2 value for timer2

 RCAP2L = 0x64; //baud rate is set to 9600 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate

 }

 else if ((LineCode[0] == 0x00) && (LineCode[1] == 0x4B)) // 19200

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow Flag

 RCAP2H = 0xFF; //Set TH2 value for timer2

 RCAP2L = 0xB2; //baud rate is set to 19200 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate

 }

 else if ((LineCode[0] == 0x80) && (LineCode[1] == 0x70)) // 28800

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow Flag

 RCAP2H = 0xFF; //Set TH2 value for timer2

 RCAP2L = 0xCC; //baud rate is set to 28800 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate

 }

else if ((LineCode[0] == 0x00) && (LineCode[1] == 0x96)) // 38400

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow

 RCAP2H = 0xFF; //Set TH2 value for timer2

 RCAP2L = 0xD9; //baud rate is set to 38400 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; // value of the lower 8 bits of timer set to baud rate

 }

else if ((LineCode[0] == 0x00) && (LineCode[1] == 0xE1)) // 57600

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34; //Int1 is detected on falling edge,

 //Enable Timer0, Set Timer overflow Flag

 RCAP2H = 0xFF; //Set TH2 value for timer2

 RCAP2L = 0xE6; //baud rate is set to 57600 baud

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate

 }

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 9

else if ((LineCode[0] == 0x00) && (LineCode[1] == 0x84)) // 230400

 {

 PCON |= 0X80;

 UART230 |= 0x03;

 }

else

 {

 SCON0 = 0x5A; //Set Serial Mode = 1, Recieve enable bit = 1

 T2CON = 0x34;

 RCAP2L = 0xF3;

 RCAP2H = 0xFF;

 TH2 = RCAP2H; //Upper 8 bit of 16 bit counter to FF

 TL2 = RCAP2L; //value of the lower 8 bits of timer set to baud rate*/

 }

 }

INF File

The virtual COM port enumeration requires an INF file.
This file points the VID/PID of the device to the default
Windows COM port driver, usbser.sys. The INF file is
included along with this application note.

Test Procedure

Hardware Requirements

 CY3684 EZ-USB FX2LP Development Kit.

 PC with USB and UART ports (UART to USB cable
can be used if the PC does not have a UART port).

 USB cable to connect to the PC from the FX2LP USB
port.

 UART cable to connect to the PC from the FX2LP
serial Port0.

Software Requirements

 Cypress USB console (CyConsole) to download
firmware into FX2LP. This can be downloaded and
installed from www.cypress.com.

 HyperTerminal or equivalent software (Teraterm) must
be available in the PC.

Hardware Setup

Figure 5 shows block diagram of the hardware test setup.

Figure 5. Hardware Test Setup

HW Connections

1. Connect the USB port of FX2LP DVK to the PC using
the USB cable.

2. Connect the UART port of FX2LP DVK to the PC
using the UART cable (or UART to USB cable if the
PC does not have a UART port).

Procedure

Use the example code that accompanies this application
note. This code is in the virtual COM Example Code
folder.

To make the required Virtual COM port firmware hex file,
open the Virtual.Uv2 file using the Keil uVision tool suite.
After you open the project, go to the Project tab and click
Rebuild all target files. A .hex file (VirtualCom.hex) is

generated. You will use this compiled hex file later in this
application note.

Hyper Terminal Settings

Note: The project included with this application note is

tested and works correctly on the 32-bit Windows XP (32
and 64 bit), Windows 7 (32 and 64 bit), and Vista (32 and

PC
HT PC
UART

HT FX2LP
UART

UART

USB

FX2LP

http://www.cypress.com/?rID=14321
http://www.cypress.com/

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 10

64 bit) operating systems. Attached INF file can be used
for all of the above mentioned PCs.

1. On the host PC, go to Start > All Programs >
Accessories > Communications and click
HyperTerminal.

This opens a new connection and prompts for the
connection description in a separate dialog box.

2. Enter a name for the connection („PC UART‟) and
click OK.

3. In the Connect Using drop-down box, select the

COM port to which FX2LP DVK serial port is
connected (COM6 in this example). Click OK.

4. The „COMx properties‟ window will appear. Since this
example is written for 2400, 4800, 9600, 19200,
28800, 38400, 57600, 115200 and 230400 Bits per
second baud rates select any of these baud-rate
values. Change the „Flow Control‟ to „None‟. Do not
change „data bits‟, „parity‟ or „stop bits‟. Click OK.

Firmware Download

The Cypress USB utility CyConsole uses USB to
download the compiled .hex file.

1. Plug the CY3684 EZ-USB
®
 FX2LP Development Kit

board into the PC using a USB cable.

2. Launch the Cypress USB console (CyConsole).

3. Go to Start > All Programs > Cypress > USB >
CyConsole EZ-USB.

4. The application launches and the following window is
displayed.

5. Download the compiled hex file by clicking the
Download tab and selecting the path where the hex

file is located. When the download is complete, it
prompts for a driver.

http://www.onfulfillment.com/cypressstore/Product.aspx?srch=CY3684&p=691&sid=205

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 11

6. Select the driver as the CyUsbCom.inf file attached
with this application note. After installation, the
compiled hex file appears in the device manager
under Ports.

7. Follow the procedure described earlier for the
HyperTerminal settings with this virtual COM port.
However, change the name PC UART to FX2LP
UART.
Select the same baud rate which is selected for PC
Hyper terminal. Now the two HyperTerminals (PC
UART and FX2LP UART) are ready to communicate
with each other.

8. Send characters and numbers from FX2LP UART by
typing the characters in the FX2LP UART
HyperTerminal. They are received in the PC UART
Terminal.

9. Now send characters and numbers from PC UART by
typing some numbers in the PC UART
HyperTerminal. They are received in the FX2LP
UART Terminal.

Following are the steps to download firmware onto
EEPROM.

a) Download SuiteUSB 3.4 and install it. This installs
the CyConsole utility.

b) Connect the CY3684 board to PC with EEPROM
ENABLE switch in “No EEPROM” position. Now the
board enumerates with the default internal
descriptor. Use CyUSB.inf available in the folder
vcp\INF file\Driver to bind with the device. For help
with binding the driver, see “Matching Devices to the
Driver” section of Cypress CyUsb.sys Programmer's
Reference.

c) Open CyConsole utility. Go to Start > All Programs
> Cypress > USB > CyConsole EZ-USB.

d) On DVK set SW1 to large EEPROM and SW2 to
EEPROM position. Download the compiled iic file
„VirtualCom.iic’ to EEPROM by clicking the Lg
EEPROM tab and selecting the path where the iic

file is located. When the download is complete reset
DVK, it prompts for a driver.

e) Add new VID/PID (one used in dscr.asm file) to
CyUsbCom.inf and then bind it with the device.

Reference

Serial Port Complete II by Jan Axelson is a good reference
for virtual COM port–related development.

http://www.cypress.com/?rID=34870
http://www.cypress.com/?docID=26658
http://www.cypress.com/?docID=26658
http://www.cypress.com/?docID=26658

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 12

Summary

This application note explains Serial port emulation on
USB port using the standard Windows driver. This
application note provides overview of CDC class and
shows how to implement it in FX2LP. This document
includes detailed explanation of firmware and step by step
procedure to test the application.

Related Application Notes

Getting Started with FX2LP - AN65209.

About the Author

Name: Prajith Cheerakkoda

Title: Applications Engineer

Contact: prji@cypress.com

http://www.cypress.com/?rID=48371

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 13

Document History

Document Title: Implementing a Virtual COM Port using FX2LP – AN58764

Document Number: 001-58764

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2845294 PRKU 01/18/2010 New application note.

*A 3174314 SSJO 02/15/2011 Updates per review.

*B 3242361 SSJO 04/27/2011 Added information about 2400 baud rate.

Updated code.

*C 3411330 PRJI 10/17/2011 Minor text edits.

Updated template.

*D 3660417 PRJI 07/05/2012 Updated Introduction.

Updated Communication Device Class Specification.

Updated Firmware (Added EndPoints, Data Transfer, Communication
Management, Baud Rate Selection).

Updated Test Procedure.

Updated Summary.

Updated in new template.

*E 3894981 PRJI 02/27/2013 Updated firmware to implement interrupt driven data transfer.

Implementing a Virtual COM Port using FX2LP

 www.cypress.com Document No. 001-58764 Rev. *E 14

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2010-2013. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/go/psoc5lp
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

